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Abstract

This dissertation presents the results of investigations undertaken in order to
develop a mathematical model of erosion of earth structures, such as dams
and embankments, in case of their overflowing.

The main assumptions are that the flow over the crest of the structure and
the resulting erosion are two-dimensional phenomena (in vertical plane),
and that the earth structure is formed of homogenous, moderately cohesive
material. The first assumption implies that a structure is being entirely
overtopped. The second assumption is applicable to small earth structures
without seepage reducing elements, such as clay cores.

The proposed mathematical model consists of two components. The first
component calculates curvilinear, accelerated flows over structures of arbi-
trary cross-sectional shape. The second component calculates quantity of the
eroded material, and deformation of the structure. Assuming quasi-steady
flow conditions, a two-step calculation procedure is proposed, so that the
two components of the model are applied one after the other, in succession.

The flow over a deformable structure can be considered as the free-surface,
accelerated, curvilinear flow, dominated by inertial effects and gravity, while
effects of viscosity (friction) can be neglected. Thus, calculation of the
flow field (water surface profiles, velocities, and pressures), can be based
on the potential flow theory. This considerable simplification was justified
by experiments.

The free-surface potential flow is calculated by the Boundary Element Me-
thod, chosen for its advantages over other numerical methods for solving
moving boundary problems. Difficulties in the free-surface determination
are due to the nonlinear nature of the problem, and simultaneous presence
of subcritical and supercritical flow regimes.The proposed numerical model,
based on the Newton-Raphson iterative procedure, is verified by several case
studies.

Solution of the erosion problem is based on laboratory investigations, using
scale models placed in a 22 m long, 1 m wide laboratory flume. The models,
built of moderately cohesive, ”equivalent material”, are designed according
to hydraulic and rheologic laws of similitude.

An exponential relationship between the flow rate of water and transport
rate of the eroded material is established. A parameter, called the ”erosion
number”, is introduced in order to quantify the instantaneous volume of the
structure, relative to its initial volume. The obtained empirical relationship
is used for calculation of the solid boundary changes (cross-sections of the
overflown structure), assuming that the erosion depths are proportional to
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the difference between the local depth-averaged velocity and the critical
velocity for the given type of material.

Investigating scale effects, it is concluded that the experimental results can-
not be considered reliable if scales are smaller than 1:15. This means that
the experimental results in this dissertation can be extrapolated to relatively
small prototype earth structures, built of homogenous, moderately cohesive
material (cohesion 10-20 kPa). Their typical geometric characteristics are –
height: 4-5 m, and side slopes: 1:1.5 or 1:2. Thus, application of the pro-
posed numerical model is limited to small earth dams on micro-reservoirs,
levees, embankments, emergency fuse plugs, and similar structures.

The proposed numerical model is calibrated and verified by experimental
data. A rather good agreement between calculation and experiment is
obtained. However, more general conclusions about model’s performance
would require additional laboratory investigations, preferably with bigger
scale models, built of different equivalent materials. Data base for model
calibration needs to be considerably extended, before the proposed numeri-
cal model can gain a wider application in practice.

The importance of numerical models such as the one proposed in this dis-
sertation, lies in their capability to predict the failure mode, the maximum
discharge, and the total failure time of overflown earth structures. These
results represent the basic input data for calculation of flood zones, as well
as for risk and damage assessment in the flooded region. In this respect the
proposed model may be considered a step further in respect to some existing
dam-break models which are based on geometrical schematizations and the
broad-crested weir formula for evaluation of discharge.
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Introduction

”When I turned back, I saw a huge wave of mud flooding the village . . .. As
I struggled to save myself, the mud was rising all around me, and finally I
was carried away . . .. This was Stava – the village that exists no more . . ..”

- Serbian newspaper ”Politika”, July, 21. 1985.

The testimonies of those who were lucky to survive the failure of the Stava
dam near city of Trentno in the Northern Italy are moving and distressing,
as is always the case when natural disasters devastate whole regions and
take human lives1.

This example of catastrophic consequences of dam-break incidents clearly
points out the enormous responsibility of those who are involved in design,
building, and maintenance of dams.

1.1 Relevance of the investigation

The statistics of the International Committee for Large Dams (ICOLD)
register more than 500 such incidents up to 1965, practically in all countries
where dams are built [13]. According to the same source, out of 92 dam-
breaks from 1806 to 1969, 53 (almost 60%) pertain to earth dams.

This dissertation is concerned only with failure of earth structures, such as
dams, dikes, and levees.

1On July 19, 1985, a fluorite tailings dam of Prealpi Mineraia failed at Stava, near
Trento, Italy. A volume of 200,000 m3 of water and tailings was released in 20 s, and
flowed 4.2 km downstream at a speed of up to 90 km/h, killing 268 people and de-
stroying 62 buildings. Aerial photographs of this catastrophic incident can be seen on:
http://www.antenna.nl/wise/uranium/mdafst.html/.

1
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The failure of an earth structure may happen due to one (or more than one)
causes listed bellow:

• erosion of foundation or body of the structure;
• damage due to high pore pressures;
• cracks due to irregular consolidation;
• crest overtopping due to undersized, or damaged structure;
• seismic action;
• other natural or anthropogenic causes.

In most of the listed cases, the failure mechanism is characterized by for-
mation of a breach, through which water is discharged from the reservoir
(Fig.1.1). The breach evolution is the result of the erosion process which is
investigated in this dissertation. Only the case when erosion is caused by
dam overtopping is being considered.

Historical data confirm that this is one of the most frequent causes of dam
failure. Almost 30% of dam failures in Switzerland, and 40% of dam failures
in the USA up to 1966 occurred due to over topping [13, 50]. A survey of
earth dam failures due to overtopping in the period 1800-1985 is given in
Table 1.1.

Figure 1.1: Failure of the 89 m high Teton dam (USA) on June 5th, 1976.
The photograph shows outflow through a breach 15 hours after the beginning
of failure which was induced by excessive seepage. A volume of 100×106 m3

of water was discharged from the reservoir, and 3 × 106 m3 of material
was washed away in a short period of time. Consequences: 11 dead, 25 000
homeless, 400×103 ha of farm land flooded, several thousand of cattle killed,
the overall damage exceeding one billion dollars [6].
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Table 1.1: Major earth dam failures due to overtopping [9, 13, 50]
(”const.” - failure under construction)

Name of dam Year of Country Height Volume Year of Failure Reservoir

completion [m] [hm3] failure time [h] volume [m3]

Waghad 1883 India 32 17 1883 - -

Johnstown 1881 USA 22 - 1889 2 20×106

Walnut Grove 1888 USA 34 11 1890 - -

Altoona 1894 USA 11 - 1894 0.5 2.5×105

Oackford Park 1893 USA 6 - 1903 2-3 8×104

Red Rock 1910 USA 20 - 1910 - -
Wisconsin Dells 1914 USA 18 25 1911 - -
Sepulveda Canyon 1914 USA 20 - 1914 - -
Lookout Shoals 1915 USA 25 49 1916 - -
Lawer Otay 1897 USA 41 52 1916 - -
Mammoth 1916 USA 23 14 1917 - -
Tigra 1917 India 27 - 1917 - -
Scott Falls 1921 Canada 15 - 1923 - -
MacMahon Gulch 1924 USA 17 1 1926 - -
Puddingstone 1928 USA 55 21 1926 const. -
Briseis 1934 Austr. 27 - 1929 const. -
Hebron 1934 USA 17 - 1942 - -
Pagara 1927 India 30 166 1943 - -
Heiwaike 1949 Japan 20 - 1951 - -
Ashizawa 1912 Japan 15 - 1956 - -
Serre-Ponçon 1943 France - - 1957 - -
Kaddam 1957 India 41 215 1958 - -

Oros 1962 Brazil 54 1000 1960 const. 700×106

Panshet 1961 India 49 212 1961 const. -
Kharagpur 1956 India 24 56 1961 - -
Ogayarindo Tameika 1944 Japan 19 1 1963 - -

Lower Two Medicine 1913 USA 13 - 1964 - 2×104

Rot a.d.Rot 1958 Germany 5.5 - 1969 2 3×105

Dhuibara 1975 Indial 21 61 1976 - -
Bolan 1961 Pakistan 19 89 1976 - -

Salles de Oliveira 1966 Brazil 41 25 1977 - 2.5×104

Laurel Run 1970 USA 12 - 1977 - -
Sandy Run 1972 USA 8.5 - 1977 - -
Macchu 2 1973 Indial 26 101 1979 - -

According to the U.S. Bureau of Reclamation, out of 8500 dams which were
investigated in the course of the Dam Safety Program, over 3000 earth dams
were classified as potentially unsafe [82]. About 85% of these dams are unsafe
due to undersized discharge structures, or insufficient height. One explana-
tion for this unfavorable situation is the fact that by extending hydrologic
series over time, the maximum design discharges are likely to have higher
values. Thus, some kind of dam rehabilitation is required2.

The overtopping is unfortunately not the only cause of dam failure. Other
causes are: seismic action, landslides, avalanches, failure of an upstream
dam, etc. Anthropogenic factor, particularly in the field of dam operation
and maintenance, is also present (Fig.1.2).

2In the case of old small earth structures, unconditional protection against overtopping
is often either economically prohibitive, or physically not feasible. The rehabilitation of
such structures presently consists of solutions enabling the structure to endure overflowing.
Such constructive solutions, based on the roll concrete and vegetation protective covers,
are intensively being investigated [75, 82].
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Figure 1.2: Events causing dam failure

Investigation of dam overflowing is especially important when small earth
structures are concerned, as those structures are potentially more dangerous
than high dams. Design of earth dams in the past was limited by insufficient
hydrological data, and by modest technological possibilities. As overtopping
prone, such dams are presently dangerous. Levees, and flood protection
dikes inherently fall into the same category, as their height is designed in
accordance to an acceptable level of risk.

An additional risk is due to scarcity or low quality of field investigation data.
As prof. Nonveiller states in his book on earth dams [80]:

”Design and building of earth dams is sometimes assigned to companies with-
out necessary experience and expertise for this kind of projects. Insufficient
attention is payed to field investigations. They may be carried out more as a
formality than as a real necessity, and as a result, only a few bore holes may
be considered sufficient. Thus, design data are either incomplete, or are
wrongly interpreted... If an earth dam does not fulfill safety requirements
in all details, dangerous consequences will inevitably follow once it is fully
loaded” .

The safety of small earth structures is especially important for Serbia, where
a number of small dams are being built for water supply and flood detention
purposes, and where a 3500 km long system of levees is maintained. Only in
the province of Vojvodina, more than 50 levee failures are registered since
1859, with over 330 000 ha of farm land being flooded (Figs. 1.3, 1.4).
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Figure 1.3: Aerial photograph of a levee break on the Danube river near town
Bogojevo, on June 16th, 1965, during one of the worst flooding events ever
recorded on this river [79]

Figure 1.4: Reparation of a Danubean levee near city of Novi Sad, and a
breach formed in the course of levee failure in April, 1940. [79]

More than 50% of farm land is potentially flooded in this region, with about
50% of the entire population, living in 173 villages.

Emergency earth structures, such as fuse plugs, also require investigation of
erosion processes connected with overflowing. As is well known, these struc-
tures are built to be intentionally overtopped and washed away, providing
way of excess water into retention basins used for flood management and
control.

Investigations performed in this dissertation are to be a contribution to the
prediction of hydraulic consequences of earth dam failures. There is a gen-
eral feeling in the Serbian hydraulic engineering community that numerical
modeling practices and tools should be upgraded in order to have more
reliable forecasting of dam-break flows. The present legislature in Serbia
requires that the early warning systems for potentially endangered regions
should be designed according to the hypothesis of total, instantaneous dam
failure [10].
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Although on the safe side, this requirement is physically unrealistic, and
practically inconvenient, since large earth volumes cannot be instantaneously
removed, and an unnecessary computational effort is required, along with
costly preparation of input geometric data and post-processing work. Partial
and progressive failure of earth dams is not only physically more plausible,
but allows quicker and financially more reasonable dam-break analyzes.

In order to investigate the hydraulic effects of partial, progressive dam failu-
res, the author has performed a series of numerical experiments, assuming a
schematized breach geometry (trapezoid/rectangular cross-section), breach
evolution rates, and the downstream river channel geometry (rectangular
cross-section, constant bed slope). The results are presented in Fig. 1.5.

Figure 1.5: The diagram on top shows dimensionless outflow hydrographs
from a breached dam for various durations of breach evolution; the param-
eter tk∗ represents the dimensionless breach evolution time (time in respect
to the total failure time). Its zero value corresponds to the instantaneous
dam failure. The diagram below shows the relationship between the maxi-
mum discharges for progressive and instantaneous dam failure, dimension-
less breach evolution times, and dimensionless distance downstream from the
dam. (More details can be found in reference [14]).
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The numerically simulated outflow hydrographs show that progressive dam
failures yield (as can be expected), attenuated hydrographs. The degree of
attenuation is proportional to the duration of dam failure. Such simple nu-
merical experiments clearly underline the need for research of the erosion of
earth structures exposed to overflowing, so that computations can be based
on physically realistic, and not on assumed or schematized conditions. That
was the principal motive for investigations initiated by this dissertation.

1.2 Objectives of the investigation

The failure of earth structures, such as dams and levees, due to their over-
topping is not a sufficiently clarified phenomenon. This complex process is
affected by numerous factors (Fig. 1.6).

Figure 1.6: Factors affecting the earth structure failure, and the resulting
outflow hydrograph

As it is impossible to fully investigate all these factors in one thesis, an
objective to develop a general solution would certainly be too pretentious.
Therefore, it is necessary from the start to assume certain limitations for
experimental research, and thus to narrow down the problem to a reasonable
level of complexity. However, it can be expected that, with more research
in future, additional information on the subject will become available, and
that more complex analytical tools will be developed.
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The basic assumptions made in this dissertation are the following:

(i) Material characteristics. Experiments are limited to moderately cohesive
materials.

(ii) Structural characteristics. Earth dams and levees are built of homo-
geneous, compactly layered material, without seepage preventing elements,
such as clay cores.

(iii) Reservoir characteristics. The size of the laboratory flume is a limiting
factor for investigations; in this particular case, the specific dam-to-reservoir
volume ratio is typically 1:25.

(iv) Inflow characteristics. A constant reservoir inflow rate is assumed. Such
boundary condition is convenient for experimental work and is physically
justified by the fact that the failure time of overflown earth structures is, as
experience shows [8], much shorter than duration of the flood event.

(v) Topographic characteristics. The experiments are carried out in a lab-
oratory flume with rectangular cross-section and zero longitudinal slope.
Thus, the valley immediately downstream from the dam is assumed to have
a rectangular cross-section.

Considering the given limitations, the problem will be analytically treated
as a quasi-steady 2D problem (in the vertical plane), whereby the erosion
process is studied only in the vertical direction (3D effects are not consi-
dered).

The main objectives of this research can be summerized in four points.

1. Investigate possibilities of numerical modeling of the erosion process
induced by overtopping of earth structures built of homogenous, mod-
erately coherent materials.

2. Develop a reliable numerical procedure for calculation of 2D curvilinear
gravity flow (water-surface profile, velocity and pressure distributions),
for a given set of boundary conditions.

3. Study qualitatively and quantitatively the erosion of earth structures,
treating this phenomenon as a 2D problem in the vertical plane (per
unit length of the structure). Studies are to be based on laboratory
experimental evidence, using pilot scale models built of homogeneous,
moderately coherent materials. Theoretical and practical aspects of
building such scale models need to be considered, as a number of
similitude conditions are to be satisfied in order to ensure realistic and
meaningful extrapolation of experimental results to actual (prototype)
structures and field conditions.
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4. Combine theoretical and experimental investigations and propose an
original numerical model for calculating the failure of overtopped earth
structures (dams, levees, embankments, etc.). This new model is to be
more physically based than existing models, which treat the erosion
process in a schematic way, by assuming the geometric characteristics
of the breach, and the rate of its evolution.

1.3 Organization of the dissertation

A brief introduction and definition of objectives is given in the first chapter.

The numerical model of erosion of earth structures exposed to overflowing
is conceptually decomposed in such a way that calculation of free-surface
(gravity) flow over the structure is followed by calculation of erosion of this
structure, based on the critical velocity concept.

Development of numerical model - part I, which refers to calculation of
the free-surface curvilinear flows, is presented in the second chapter. A
model based on the Boundary Element Method is proposed. In addition
to theoretical considerations, practical aspects of the model application are
discussed. A number of case studies are used for testing the performance of
the model.

The third chapter is dedicated to original experimental investigations, which
were undertaken in order to clarify some physical aspects of the phenomenon,
and to provide experimental data base for deriving an empirical relationship
between the water and sediment flow rates. Erosion resistance of moderately
cohesive soils is investigated, and a number of similitude conditions for build-
ing pilot scale models are derived. Measuring equipment and techniques are
described. Qualitative and quantitative analysis of experimental results are
given, and scale effects are evaluated.

Development of numerical model - part II, which refers to calculation of ero-
sion depths along the overflown structure, is presented in the fourth chap-
ter. First, the critical velocity for incipient motion of cohesive materials
is defined. Then, the empirical function derived from author’s laboratory
investigations, is used to calculate the total eroded volumes over time. A
method for calculating deformable solid boundary (variable cross-sectional
shapes of the earth structure during its failure), is proposed.

Chapter five is dedicated to validation of the numerical model. One of
the laboratory experiments is chosen for this purpose. A complete set of
results is presented, consisting of the water surface and erosion contours at
specific time intervals. The quality of the calculated results is evaluated
using photographs taken during experiments.
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Finally, conclusions are formulated, and topics for further research are sug-
gested in the sixth chapter. A comprehensive list of references, sorted ac-
cording to topics, is given at the end.
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Development of the
Numerical Model - Part I

Erosion of earth structures exposed to overflowing is a very complex phe-
nomenon, and its numerical simulation is coped with a number of problems.
Some of these problems are of conceptual nature (governing equations),
while others are linked with the model implementation.

This chapter starts with explanation how the mathematical model of this
complex physical process may be decomposed into two, mutually connected,
simpler component models. Then follows consideration of the first compo-
nent which refers to calculation of the free-surface curvilinear flow over a
structure of an arbitrary cross-sectional shape. Theoretical background is
provided, and some practical aspects of the numerical model development
and implementation are discussed.

The second component of the model, referring to erosion modeling, is pre-
sented in the fourth chapter.

2.1 Conceptual fundamentals

In order to develop a mathematical model of erosion of an overflown earth
structure, several problems need to be considered, the most important ones
being:

(i) Unsteady flow regime. Flow over deformable earth structures is variable
in space and time. A concept of quasi-steady flow conditions is assumed,
which means that the unsteady flow regime is analyzed as a succession of
steady states within a number of very short time intervals ∆t. This implies
averaging the hydraulic and sedimentologic parameters in each time interval.

11
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It must be stressed that numerical modeling of accelerated, curvilinear gravi-
ty flow is not simple even if the flow is assumed to be steady. Determination
of the free-surface profile is a highly non-linear problem, imposing numeri-
cally sensitive iterative solutions.

(ii) Liquid-solid interaction. The mathematical model in this dissertation
is based on the assumption that, under certain conditions, the hydraulic
and sedimentologic computations may be uncoupled. As cohesion tends to
slow down the erosion process, it can be assumed that the erosion-induced
changes of the solid boundary are slower than changes of the free-surface
boundary. Thus, if the problem is considered as two-dimensional in the
vertical plane, computation of the free-surface profile and the corresponding
velocity field may be done in the first step, and the computation of the
deformed solid surface profile will follow in the second step. It means that
erosion is calculated for the known flow field, representative for the time
interval ∆t. Then the new contour of the solid boundary is used for hydraulic
computation in the next time period ∆t, and the two-step procedure is
repeated until the structure is completely washed away.

Theoretical justification for this approach is given by de Vries [72]. Starting
from the basic conservation laws, and assuming that the sediment flow rate
is proportional to the depth-averaged velocity, this author has formulated a
dimensionless power relationship between propagation rates of disturbances
on the water surface and the bed surface:

φ3 − 2φ2 + (1− Fr−2 − ψ · Fr−2)ψ+ ψ · Fr−2 = 0, (2.1)

where φ - the relative propagation rate of disturbances, Fr =ũ/
√
g · h - the

local Froude number, defined in terms of the local depth-averaged velocity
ũ and depth h, ψ - the sediment transport parameter reflecting sediment
concentration.

The equation (2.1) has three real roots:

φ1 = 1 +
1
Fr

φ2 = 1 − 1
Fr

φ3 =
ψ

1 − Fr2





(2.2)

which are graphically depicted in Fig.2.1.

The roots φ1 and φ2 reflect the flow disturbance celerities, and the root
φ3, celerity of disturbances on the bed. From the given diagram it can be
concluded that variables φ1 and φ2 are independent of bed mobility φ3 in
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Figure 2.1: Relative propagation rates of disturbances [72]
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either subcritical or supercritical flow regimes. It is only under the critical
flow conditions (Fr ≈ 1 ) that the disturbance celerities become comparable
in the absolute sense, in which case the concept of uncoupled hydraulic and
sedimentologic calculations cannot be applied.

A schematic representation of an overflown earth structure is given in Fig.2.2.
This diagram, showing the free surface profile at one particular instant, is
based on author’s laboratory experiments which will be later described.

Figure 2.2: The Froude number values along the flow

Considering distribution of the Froude number values, the regions of sub-
critical (slow) and supercritical (accelerated) flows are clearly delineated,
with a very short region of the critical flow at the crest of the structure. It
is decided to apply the concept of uncoupled hydraulic and sedimentologic
calculations, and to investigate whether in this particular case this concept
can be justified.

(iii) Erosion resistance of cohesive materials. There is no general theoretical
approach in defining the resistance of cohesive materials to flowing water.
Answers may be found solely by the empirical research. For this reason,
a program of laboratory experiments is proposed in order to determine an
empirical relationship between water and solid discharges which could be
subsequently incorporated in the numerical model.

2.2 Previous Work

A number of progressive dam-break numerical models have been developed
in the past, some of which are more of theoretical than of practical sig-
nificance. All of these models introduce some schematization which is the
limiting factor for their general application.

One of the best known models is the model of Cristofano [5]. It is based
on an assumed exponential relation between the water and solid flow rates,
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formulated in terms of the breach size, water surface elevation in the reser-
voir, and the internal friction angle of the material. The trapezoidal breach
cross-section is linearly increasing during an assumed period of breach de-
velopment. The longitudinal breach slope is constant, and the flow through
the breach is uniform. During the dam failure, the reservoir water surface
elevation is invariable.

The model of Thiriot [12] treats the dam breach as rectangular broad crested
weir with horizontal bottom. The material is cohesionless, and its transport
rate is defined by the Meyer-Peter and Muller formula.

The US Bureau of Reclamation model [3] uses the Schoklitsch formula for
sediment transport. The breach is schematized as a canal with longitudinal
slope 5o-20o. Its cross-section has side slopes of 45o and parabolic bottom,
in accordance to the photographed Teton dam breach.

The model proposed by Fread, implemented in the National Weather Service
(NWS) DAMBRK software [6, 8], also uses an assumed linear growth of the
trapezoid breach in time. The reservoir outflow discharge is calculated by
the broad crested weir formula. No parameters reflecting the physics of the
erosion process are considered.

Contrary to the previous models, the approach of Sametz [11] is physically
based. This author used scale models of dams made of homogenous, co-
hesionless material, and also models with waterproof cores. He found an
exponential relationship between the breach flow rate and transport of the
eroded material. Experiments showed that in case of the progressive dam
failure, the maximum outflow can be up to 40% smaller than the maximum
outflow when dam failure is instantaneous.

2.3 Solution methods for the free-surface

accelerated flows

The mathematical model of flow over a deformable earth structure, deve-
loped in this dissertation, is based on the potential flow theory and the
Boundary Element Method, for reasons which will be subsequently ex-
plained.

The problem of analytical treatment of curvilinear gravity flows is one of the
classical problems in hydraulics. The solution methods are based either on
the modified St. Venant equations (”Dressler equations”), or on the potential
flow theory.

The first approach is physically more plausible than the second one, but
numerically considerably more complicated (see for instance [70, 71, 73,
74]). On the other hand, application of the potential flow theory for the
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curvilinear gravity flows is justified by the fact that effects of inertial and
gravity forces on fluid particles are dominant in respect to effects of forces
due to pressure and viscosity. Neglecting viscous effects (as secondary),
the numerical flow model can be made relatively simple, but reliable and
efficient for engineering application. In fact, one of the main objectives of
this dissertation is development of such a simplified model and evaluation
of its performance.

The numerical techniques for solution of free-surface potential flows can
be generally classified into three groups: the Finite Difference Methods
(F.D.M.), the Finite Element Methods (F.E.M.), and the Boundary Ele-
ment Methods (B.E.M.).

After studying the comparative advantages and disadvantages of these me-
thods, the Boundary Element Method is chosen, having the main advantage
in the fact that a relatively small number of computational points on the
boundary of the domain are sufficient to obtain solution. This is especially
convenient for iterative determination of the free-surface, as there is no need
for restructuring the computational mesh inside the domain in each iteration,
as in other methods. This point will be later discussed in detail.

2.4 The Boundary Element Method

The Boundary Element Method (B.E.M.) is often erroneously considered as
a variant of the Finite Element Method (F.E.M.). However, it has been used
in Mechanics long before the F.E.M. under different names: The Method
of Boundary Integrals, Treftz Method, The Panel Method, and Method of
Green’s Functions.

The basic idea of the B.E.M. is to replace, under certain conditions, a partial
differential equation by a corresponding integral equation, and thus to solve
the problem on the boundary of the domain. In this way a 2D problem is
reduced to 1D problem. Solutions for chosen points inside the domain are
obtained subsequently, from the known solution on the boundary.

The B.E.M. is an optimal method for analysis of potential flows, and free-
surface flows which can be considered as potential flows (flow in porous
media, small amplitude friction independent waves, and inertial dominated
flows in vicinity of hydraulic structures – gates, orifices, spillways, etc.). The
B.E.M. can efficiently provide the solution of a 2D free-surface problem,
defined in the vertical plane. The free-surface is not known a priori, but
has to be determined as a part of the overall solution, for the given set of
boundary conditions.

As has been already pointed out, the main advantage of the Boundary Ele-
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ment Method over the Finite Element Method (in the class of problems for
which both are equally applicable) is the fact that the former method yields
faster solutions, with considerably less input data. In addition to this, the
B.E.M. gives not only the values of the dependent variable on the boundary,
but also the values of its normal derivative.

The B.E.M. allows easier solution algorithms for determination of the free-
surface, because only a small number of nodes on the free-surface are relo-
cated at each iteration, while the F.E.M. requires regeneration of the com-
plete mesh, including all interior points.

The main disadvantage of the B.E.M. is its limited applicability to the el-
liptic problems, defined by the Laplace equation, and the related equations.

Derivation of the basic integral equation of the B.E.M. starts from the
Green’s theorem specifying relation between the volume and surface inte-
grals:

∫

∀
∇ · v d∀ =

∫

A
v · n dA, (2.3)

where the Hamilton’s operator ∇ represents vector:

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k,

v is an arbitrary vector, and n is the unit vector normal to the surface A.

The equation (2.3), used in Fluid Mechanics for formulating continuity laws,
postulates that the flux of an arbitrary vector v through a closed surface A
is equal to the integral of divergence of this vector (∇·v=div v) over volume
∀, enclosed by the surface A.

In case of the 2D problems, the integral theorem (2.3) reads:

∫

Ω
(∇ · v) dΩ =

∫

Γ
v · n dΓ, (2.4)

where Γ is the closed curve enclosing the surface Ω (Fig. 2.3).

Let us assume now that the vector v can be expressed by two, twice diffe-
renciable scalar functions U(x, y) i V (x, y) in the following manner:

v = U∇V (2.5)
v = V∇U. (2.6)
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Figure 2.3: Boundary of the solution domain

In the first case, the following development is possible:

∇ · v = ∇ · U∇V =
(
∂

∂x
i +

∂

∂y
j

)(
U
∂V

∂x
i + U

∂V

∂y
j

)
=

+
∂U

∂x

∂V

∂x
+
∂U

∂y

∂V

∂y
+ U

∂2V

∂x2
+ U

∂2V

∂y2
=

= ∇U · ∇V + U · ∇2V, (2.7)

thus equation (2.4) becomes:

∫

Ω

(
∇U · ∇V + U∇2V

)
dΩ =

∫

Γ
U∇V ·n dΓ, (2.8)

where ∇2 is the Laplace operator.

Similarly, in the second case:

∇ · v = ∇ · V∇U = ∇V · ∇U + V · ∇2U, (2.9)

and equation (2.4) becomes:

∫

Ω

(
∇V · ∇U + V∇2U

)
dΩ =

∫

Γ
V∇U ·n dΓ. (2.10)

Subtracting (2.10) from (2.8), an expression referred to as the ”main”, or
the ”second Green’s formula” is obtained:
∫

Ω
(U∇2V − V∇2U) dΩ =

∫

Γ
(U∇V − V∇U) · n dΓ. (2.11)

Using the following notation for the normal derivatives:

∇V · n =
∂V

∂n
∇U · n =

∂U

∂n
, (2.12)
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the basic equation (2.11) can be formulated in this way:

∫

Ω
(U∇2V − V∇2U) dΩ =

∫

Γ

(
U
∂V

∂n
− V

∂U

∂n

)
dΓ. (2.13)

If the functions U i V are chosen so to satisfy the Laplace equation:

∇2U = ∇2V = 0, (2.14)

the left side of equation (2.13) becomes zero, thus:

∫

Γ

(
U
∂V

∂n
− V

∂U

∂n

)
dΓ = 0. (2.15)

The equation (2.15) is the basic integral equation of the B.E.M.1.

Further transformation of this equation depends on the choice of functions U
and V . Function U can be replaced by either the velocity potential function
Φ or the stream function ψ. Both of these functions satisfy the Laplace
equation defining potential flows.

Function V needs to be chosen in the form of the fundamental solution of the
Laplace equation [28, 29], which means that it satisfies the Laplace equation
everywhere in the domain, except at a singular point P (Fig. 2.4-(a)). This
condition can be expressed as:

∇2V = δ(P ), (2.16)

where the Dirac’s function δ takes the value of one at point P (unit sink),
and takes the zero value at all other points. Function V defined by (2.16) is
also known as the ”Green’s function in the unbounded space” [41].

The solution of equation (2.16) for 2D problems takes this form [29, 41]:

V = ln r, (2.17)

where r represents distance between the singular point P and an arbitrary
point Q on the boundary (Fig. 2.4-(a)). Near point P (r →0), function V
tends toward infinity. In order for the basic equation (2.15) to be valid, it
is necessary to exclude point P by circumventing it with a circle of small
radius ro, as is shown in Fig. 2.4-(a).

1The same integral equation can be derived following the residual methods approach
in the F.E.M. theory.
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Figure 2.4: Solution domain and boundary over which integration is per-
formed: (a) singular point inside domain; (b) singular point on the bound-
ary

Substitute now function U in equation (2.15) with potential Φ, and assume
that function V is defined according to (2.17):

∫

Γ

[
Φ
∂(ln r)
∂n

− ln r
∂Φ
∂n

]
dΓ + lim

ro→0

∫

σ

[
Φ
∂(ln r)
∂n

− ln r
∂Φ
∂n

]
dΓ = 0. (2.18)

The integrals along lines connecting the elementary circle with the boundary
cancel each other due to the opposing directions of integration. Since the
outside normal ~n to the domain Ω is on the circle σ directed toward point
P , it follows for this part of the boundary:

∂(lnr)
∂n

= −1
r
· ∂r
∂n

= −1
r
. (2.19)

Considering that: dΓ = rodθ and that the function Φ(x, y) is independent
of ro, it can be shown for the integral around circle:

lim
ro→0

∫ 2π

0

(
Φ

1
ro

− ln ro
∂Φ
∂ro

)
roθ = lim

ro→0

∫ 2π

0
(−Φ)dθ = −2πΦ(P ). (2.20)

Finally, equation (2.18) takes the form:

2π Φ(P ) =
∫

Γ

[
Φ(Q)

1
r

∂r

∂n
− ln r

∂Φ(Q)
∂n

]
dΓ. (2.21)

This equation shows that by integration along the boundary, the value of
variable Φ can be determined for any point P inside the domain, once the
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values of this variable and its normal derivative are known at any point Q
on the boundary of the domain.

For the well-poised problem, the solution of equation (2.21) requires that
values of either Φ or ∂Φ/∂n are specified as the input data along certain
parts of the boundary. Values of the other (missing) variable are calculated
on the corresponding parts of the boundary. For this purpose, the singular
(base) point is moved over to the boundary, where it is circumvented by a
circular arch σ, with a characteristic angle θ (Fig. 2.4-(b)). Usually, θ ≤ 2π,
but for straight boundary, θ = π.

Ultimately, the integral equation used for solution of the unknown variables
on the boundary has this general form:

θ Φ(P ) =
∫

Γ

[
Φ(Q)

1
r

∂r

∂n
− ln r

∂Φ
∂n

]
dΓ (θ ≤ 2π). (2.22)

2.4.1 Solution on the boundary of the flow domain

The numerical solution of equations (2.21) and (2.22) requires approximation
of the boundary contour Γ by a polygon, whose sides represent boundary
elements, and whose points are the nodes in which the solution is calculated
(Fig. 2.5).

Figure 2.5: Approximation of the solution domain by boundary elements

Each nodal point Pi (i = 1, 2, . . . , nc) becomes in turn, moving clockwise or
counterclockwise, a singular point for which an equation of the type (2.22)
can be applied. Thus, nc equations, relating variables Φ and ∂Φ/∂n on the
boundary, are available.

The physics of the problem dictate on which parts of the boundary the
values Φ are to be specified, and on which parts the values ∂Φ/∂n are to
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be specified2. In the former case the boundary condition is of the Dirichlet
type, and in the latter case, it is of the Neumann type. At locations where
the change of boundary condition type occurs, two nodes are set closely
apart.

Following procedure which is similar to that in the F.E.M., the system of in-
tegral equations is, taking account of the boundary conditions, transformed
to a system of linear algebraic equations to be solved for the boundary values
Φ and ∂Φ/∂n. Those values are used for subsequent integration of equation
(2.21), which gives the solution inside the computational domain.

Linear 1D elements. The simplest way to solve equation (2.22) is to
assume linear variation of functions Φ and ∂Φ/∂n along each element. In this
case integration in closed form is possible over real elements (there is no need
for introduction of referent unit elements, as when numerical integration is
applied). The advantage of analytical integration is the accuracy and speed
of calculation.

Consider an element defined by end nodes Pj and Pj+1 (Fig. 2.6). The
position of an arbitrary point along this element is defined by the distance
to the singular point ri, or by the local coordinates (ξ, η).

Figure 2.6: Geometry of the boundary element

2It is to be recalled from the elementary Fluid Mechanics that the derivative ∂Φ/∂n
represents the velocity component normal to the boundary. If alternatively, the stream
function is chosen for the unknown variable, the derivative ∂ψ/∂n is the tangential velocity
component in respect to the boundary.
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The linear variation Φ = a+b ·ξ along the element implies that the values of
the coefficients a and b are to be determined from the condition Φ(ξj) = Φj

and Φ(ξj+1) = Φj+1:

Φj = a+ b · ξj
Φj+1 = a+ b · ξj+1

}
, (2.23)

from where it follows that:

a =
ξj+1Φj − ξjΦj+1

ξj+1 − ξj
; b =

Φj+1 − Φj

ξj+1 − ξj
. (2.24)

If the length of the element is denoted by: le = ξj+1 − ξj , where the su-
perscript ”e” stands for the element number, the linear variation can be
formulated in this way:

Φ = N
(e)
j · Φj +N

(e)
j+1 ·Φj+1, (2.25)

∂Φ
∂n

= N
(e)
j ·

(
∂Φ
∂n

)

j
+N

(e)
j+1 ·

(
∂Φ
∂n

)

j+1
, (2.26)

where the linear interpolation functions are:

N
(e)
j =

1
le

(ξj+1 − ξ); N
(e)
j+1 =

1
le

(ξ − ξj). (2.27)

Consider now the same element and the singular point at the node ”i”. The
unknown variables Φ and ∂Φ/∂n, appearing in the integral equation (2.22),
can be defined according to expressions (2.25) and (2.26), and the following
expression is obtained:

I
(e)
i =

∫ ξj+1

ξj

(
Φ
ri

· ∂ri
∂n

− ln ri
∂Φ
∂n

)
dξ = Φj (ke

1)i,j + Φj+1 (ke
1)i,j+1 −

−
(
∂Φ
∂n

)

j
(ke

2)i,j −
(
∂Φ
∂n

)

i,j+1
(ke

2)i,j+1. (2.28)

The equivalent matrix equation is:

I
(e)
i =

[
(ke

1)i,j (ke
1)i,j+1 0 0

0 0 −(ke
2)i,j −(ke

2)i,j+1

]





Φj

Φj+1(
∂Φ
∂n

)

j(
∂Φ
∂n

)

j+1





=
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= {(ke
1)i,j (ke

1)i,j+1}
{

Φj

Φj+1

}
−

− {(ke
2)i,j (ke

2)i,j+1}





(
∂Φ
∂n

)

j(
∂Φ
∂n

)

j+1





, (2.29)

where:

(ke
1)i,j =

∫ ξj+1

ξj

N
(e)
j (ξ) · 1

ri

∂ri
∂n

dξ

(ke
1)i,j+1 =

∫ ξj+1

ξj

N
(e)
j+1(ξ) ·

1
ri

∂ri
∂n

dξ

(ke
2)i,j =

∫ ξj+1

ξj

N
(e)
j (ξ) ln ri(ξj+1 − ξ) dξ

(ke
2)i,j+1 =

∫ ξj+1

ξj

N
(e)
j+1(ξ) ln ri(ξ − ξj) dξ.





(2.30)

Noting in Fig. 2.6 that the radial distance is:

ri =
√
η2

i + ξ2, (2.31)

and that the corresponding normal derivative:

∂ri
∂n

=
∂ri
∂ηi

=
∂

∂ηi

(
η2

i + ξ2
)1/2

=
ηi

ri
, (2.32)

is equal to the cosine of the angle between the outward normal and the di-
rection ri, the matrix coefficients listed in (2.30), can be analytically defined
in the following way [41]:

(ke
1)i,j = − I11 + ξj+1 · I12

(ke
1)i,j+1 = I11 − ξj · I12

(ke
2)i,j = − I21 + ξj+1 · I22

(ke
2)i,j+1 = I21 − ξj · I22.





(2.33)

where:

I11 =
1
le

∫ ξj+1

ξj

1
ri

∂ri
∂η

ξ dξ =
ηi

2le
ln

(
η2

i + ξ2j+1

η2
i + ξ2j

)
, (2.34)
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I12 =
1
le

∫ ξj+1

ξj

1
ri

∂ri
∂η

dξ =

=
1
le

[
tan−1

(
ξj+1

ηi

)
− tan−1

(
ξj
ηi

)]
, (2.35)

I21 =
1
le

∫ ξj+1

ξj

ln ri · ξ dξ =

=
1

4le
{
(η2

i + ξ2j+1)
[
ln(η2

i + ξ2j+1) − 1
]
−

− (η2
i + ξ2j )

[
ln(η2

i + ξ2j )
]}
, (2.36)

I22 =
1
le

∫ ξj+1

ξj

ln ri dξ =

=
1

2le
{
ξj+1 ln(η2

i + ξ2j+1) − ξj ln(η2
i + ξ2j ) − 2le +

+ 2ηi

[
tan−1

(
ξj+1

ηi

)
− tan−1

(
ξj
ηi

)]}
. (2.37)

It can be noticed that coefficients ke
1 and ke

2 depend solely on the geometry
of the boundary3.

The elementary matrix in equation (2.29) is nominally of size 2×2, since
there are two degrees of freedom in each node (Φ and ∂Φ/∂n). However,
there are four degrees of freedom per element, and in order to eliminate zero
elements, the elementary matrix is, by splitting variables, replaced by two
row-matrices, as is shown by the given equation.

3In derivation of expressions (2.34)-(2.37), the following relations are used:

∫
ηi

ξ2 + η2
i

ξ dξ =
ηi

2
ln(ξ2 + η2

i );

∫
ηi

ξ2 + η2
i

dξ = tan−1 ξ

ηi
;

∫
1

2
ln(ξ2 + η2

i )ξ dξ
1

4
(ξ2 + η2

i )
[
ln(ξ2 + η2

i ) − 1
]
;

∫
1

2
ln(ξ2 + η2

i ) dξ =
1

2

[
ξ ln(ξ2 + η2

i ) − 2ξ + 2ηitan
−1 ξ

ηi

]
.
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By summing up the contribution of all elements along the boundary, and
systematically moving the singular point Pi (i=1,2,. . . , nc) over this bound-
ary, it is possible to form a system of algebraic equations with unknowns Φj

and (∂Φ/∂n)j:

Nc∑

j=1

Hi,jΦj =
Nc∑

j=1

Gi,j

(
∂Φ
∂n

)

j
(i = 1, 2, . . . , nc), (2.38)

where:

Hi,j = (ke
1)i,j − δi,jθi; Gi,j = (ke

2)i,j . (2.39)

The same system is in matrix notation:

[H ]{Φ} = [G]{∂Φ
∂n

}. (2.40)

By introducing boundary conditions, the given system of linear equations
(2.40), which has a full asymmetric coefficient matrix, can be solved by the
direct Gauss method, with row exchange in case of zero diagonal element.

Higher order elements. As has been remarked, the advantages of linear
elements is the accuracy and speed of the analytical integration. Therefore,
the linear elements can be recommended for the majority of problems. Ap-
plication of higher-order interpolation functions (which require numerical
integration), does not necessarily warrant more accurate results. However,
in some cases higher-order interpolation functions are necessary. Typical ex-
amples are local singularities which require special interpolation functions.
Values of coefficients ke

1 and ke
2 in (2.30) need in such cases to be determined

approximately, by some method of numerical integration.

The numerical integration is performed over a referent element of unit
length: 0≤ ξ ≤ 1, with the interpolation functions defined in form of com-
plete or incomplete polynomials (Fig. 2.7):

N1 = 1 − ξm; N2 = ξm

N1 = (1 − ξ)m; N2 = ξm

N1 = (1 − ξ)m; N2 = 1 − (1 − ξ)m.





(2.41)

The value of exponent m ≥ 1 is problem dependent. For m=1, linear in-
terpolation functions are obtained (2.27). The fundamental condition for
interpolation is fulfilled; the value of function N1 is equal to one at the first
node (ξ=0), and is equal to zero at the second node (ξ=1). The opposite
holds true for function N2.
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Figure 2.7: Linear and non-linear interpolation functions over the referent
element

When special interpolation functions are used, their analytical form is chosen
according to the type of singularity.

Here is an example. A flow region shown in Fig. 2.8 has one linear boundary,
and one ”broken” boundary, the elements e=11 and e =12 (with nodes 11,
12, and 12, 13 respectively) forming an angle of 3π/2 (270o). The vertex
node no. 12 is a point of singularity in which the direction of the outward
normal is not uniquely defined, and the velocity tends to infinity. This type
of singularity is known as the ”boundary singularity”.

Figure 2.8: Example of boundary singularity at node no. 12

In order to get a solution more accurate than the one obtained by linear
elements, special interpolation functions may be used over elements e=11
and e=12. These functions are based on the theoretical solution: Φ ∝ s2/3,
where s is distance measured from the point of singularity4.

4In the theory of conformal transformations there is a relation between complex num-
bers z = x+ j y and w(z) = Φ(x,y) + j ψ(x, y) (”complex potential”), where j is the unit
imaginary number. For flow near the boundary at an angle θ = π/m: w=const·zm, the
real flow being defined in the ”z-plane”, and the potential flow, in the ”w-plane”. Taking
only the real parts of complex numbers, and setting θ=3π/2, and m=2/3, it follows that
w ∝ z2/3=s2/3, where s is the distance from the point of singularity [88].
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New functions are introduced:

• element e=11:

N1 = 1 − ξ2/3; N2 = ξ2/3; (2.42)

• element e=12:

N1 = (1 − ξ)2/3; N2 = 1 − (1 − ξ)2/3. (2.43)

Integration is performed over the referent unit element with the origin at
the left node (ξ=0). (When defining the interpolation functions, it is to be
remarked that the coordinates ξ and s are oriented in the same direction in
element no. 11, and in the opposite directions in element no. 12.)

The impact of singularities on the solution is variable. Some are ”strong”
singularities, causing unstable, oscillatory solutions for the normal deriva-
tive. Some are ”weak” singularities, such as the boundary similarity in the
previous example.

Generally, the problem of singularities can be solved either by locally in-
creasing the number of nodes, or by introducing special elements. Local
analytic solutions can be coupled efficiently with (linear or non-linear) stan-
dard interpolation functions, yielding results of remarkable quality.

Numerical integration. The well-known Gauss (or Gauss-Legendre)
quadrature is standardly used in the F.E.M. [27, 29]. This type of numerical
integration will not be discussed here.

In the B.E.M. integrals of the type:

I =
∫ b

a
f(x) ln(x− a) dx, (2.44)

impose the problem of the logarithmic singularity: limx→a ln(x− a) = −∞,
which can be solved only by the special Gauss quadrature.

The special quadrature is based on the change of variables:

ξ =
x− a

b− a
, (2.45)

where ξ takes values from 0 (x = a) to 1 (x = b).

From (2.45) it is evident that: dξ=dx/(b− 1) and x = ξ(b−a)+a, thus the
integral (2.44) is replaced by the sum of two integrals:

I1 = (b− a)
∫ 1

0
ln ξ · f [ξ(b− a) + a]dξ (2.46)
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I2 = (b− a)
∫ 1

0
ln(b− a) · f [ξ(b− a) + a]dξ. (2.47)

The second integral I2 can be solved by the standard Gauss quadrature,
while the first integral I1 requires the special quadrature in the form [39]:

I1 ≈ (b− 1)
rs∑

i=1

ωs
i · f(ξs

i ), (2.48)

where:

ξs
i = a+ (b− a)χs

i . (2.49)

The values of weighting factors ωs
i and corresponding zeroes χs

i are listed
for rs=4 in Table 2.1.

Table 2.1: Values of the special weighting factors and zeroes

χs
i ωs

i

0.0414484802 -0.3834640681
0.2452749143 -0.3868753177
0.5561654535 -0.1904351269
0.8489823945 -0.0392254871

2.4.2 Solution inside the flow domain

Once the values of variables Φ i ∂Φ/∂n are determined over the boundary
of the computational domain, the solution for a number of chosen interior
points is sought by solving equation (2.21). Care must be taken that the
interior point is not too close to the boundary, as it may affect the accuracy5.

5Experience shows that the distance between the interior point and the closest bound-
ary element should not be less than the length of the element itself.
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The solution in the interior points consists of velocity components, obtained
by differentiating (2.21)6:

u =
∂Φ(P )
∂x

=
1
2π

∫

Γ

[
Φ(Q) sinβ

r2i
+

2Φ(Q)ηi(ξ cosβ − ηi sin β)
r4i

+

+
ξ cos β − ηi sinβ

r2i
· ∂Φ
∂n

(Q)

]
dΓ (2.53)

v =
∂Φ(P )
∂y

=
1
2π

∫

Γ

[
−Φ(Q) cosβ

r2i
+

2Φ(Q)ηi(ηi cosβ + ξ sin β)
r4i

+

+
ηi cosβ + ξ sin β

r2i
· ∂Φ
∂n

(Q)

]
dΓ, (2.54)

Analytic solution of integrals (2.53) and (2.54) is possible7.

Two important facts are to be acknowledged:

(a) Derivatives in respect to the x, y coordinates cannot be defined on the
boundary, as coincidence of points P and Q leads to singular integrals.

6In derivation of the given expressions, the previously calculated values of the potential
and its derivative in any point Q on the boundary are considered constants, and the
following geometric relations, established in Fig. 2.6, were applied:

∂η

∂x
= sin β, (2.50)

∂r

∂n
=

η

r
, (2.51)

∂r

∂x
= −ξ cos β − η sin β

r
, (2.52)

7For this purpose, the following relations may be used:

∫
dξ

(ξ2 + η2)2
=

ξ

2η2(ξ2 + η2)
+

1

2η3
tan−1 ξ

η
;

∫
ξdξ

(ξ2 + η2)2
= − 1

2(ξ2 + η2)
;

∫
ξ2dξ

ξ2 + η2
= ξ − ηtan−1 ξ

η
;

∫
ξ2dξ

(ξ2 + η2)2
= − ξ

2(ξ2 + η2)
+

1

2η
tan−1 ξ

η
.
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(b) Care must be taken of the sign of the coordinate η; if the location vector
and the coordinate η are oriented in the same direction, as in Fig. 2.6, the
sign is positive. It is negative when the location vector ri connecting points
P and Q ”falls” outside the computational domain.

2.4.3 Iterative determination of the free-surface

As has been pointed out, the B.E.M. is very suitable for solution of the free-
surface flows which can be considered as potential flows. This is the case
with accelerated flows over weirs or spillways, where gravity and inertial
effects are dominant over the viscous effects (friction).

Consider the problem defined in the vertical (x, y) plane (Fig. 2.9). Due to
strong curvature of streamlines, the assumption of the hydrostatic pressure
distribution over depth is invalid, and solution is based on the potential flow
theory.

Figure 2.9: Computational domain and the boundary conditions

Assuming quasi-steady flow conditions, the problem can be defined in terms
of the stream function ψ, by the Laplace equation:

∇2ψ = 0 (2.55)

and the Bernoulli equation:

y +
1
2g

(
∂ψ

∂n

)2

= E, (2.56)

where the velocity in the flow direction is defined by the derivative ∂ψ/∂n,
and the energy head E is constant for the ideal fluid flow.

The stream function value on the free-surface is equal to the unit discharge.
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The free-surface curve is defined by the vertical coordinates y of m nodes
lying on the part of the boundary which represents the free-surface. Eleva-
tion of the free-surface nodes and the energy head E are to be determined
iteratively for the given discharge, i.e. the given ψ value. (Alternatively, the
discharge can be calculated for the given energy head E.)

The complexity of iterative solution for the free-surface is due to the fact
that elevations of the free-surface nodes are mutually dependent, and that
corrections of these elevations must be made simultaneously in each iteration.
This non-linear problem can be efficiently solved by the Newton-Raphson
method [41, 37].

The starting point is the fact that the energy head values in each of the m
free-surface nodes depend on the vertical coordinates y of all such nodes,
while their horizontal coordinates x are assumed unchanged:

E1 = E1(y1, y2, . . . , ym)
E2 = E2(y1, y2, . . . , ym)
... =

...
Em = Em(y1, y2, . . . , ym).





(2.57)

By expanding in Taylor series up to the first derivative:

∆E1 =
∂E1

∂y1
∆y1 +

∂E2

∂y2
∆y2 + . . .+

∂E1

∂ym
∆ym

∆E2 =
∂E2

∂y1
∆y1 +

∂E2

∂y2
∆y2 + . . .+

∂E2

∂ym
∆ym

... =
...

∆Em =
∂Em

∂y1
∆y1 +

∂Em

∂y2
∆y2 + . . .+

∂Em

∂ym
∆ym,





(2.58)

a matrix equation is obtained:

{∆E} =
[
dE
dy

]
{∆y}. (2.59)

The solution of this equation is a vector of corrections for the free-surface
node elevations:

{∆y} =
[
dE
dy

]−1

{∆E}. (2.60)
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The vector {∆E} represents deviations of energy head values, calculated
at the free-surface nodes, from the mean energy head, determined in the
previous iteration.

The Jacobian matrix of derivatives [dE/dy] is formed by numerical differen-
tiation; an elementary vertical displacement is imposed on each free-surface
node in turn, and then the energy head changes (in respect to values in the
previous iteration) are calculated in all free-surface nodes.

After calculating the corrections, ”new” position of the free-surface nodes is
determined:

{y}it = {y}it−1 + {∆y}it−1, (2.61)

where the subscript ”it” denotes the iteration number8. The solution has
converged when the calculated corrective values {∆y} become smaller than
a preset tolerance value.

2.5 Calibration and verification of the numerical
model

In order to calibrate the numerical model based on the B.E.M. and test its
predictive performance, three case studies from literature are considered.

2.5.1 The WES spillways

The first case study pertains to investigations, performed by the US Army
Engineers Waterways Experiment Station (”WES”) in order to prescribe
the optimal spillway contour for any given design head [69]. The WES
spillways have a vertical upstream face, a hydraulically shaped crest, and a
downstream face at a slope of 45o. The results of investigations consist of
free-surface coordinates, defined for a number of ratio values H/Hd, where
H is the actual head, and Hd is the design head. (Upstream velocity head is
neglected.)

The proposed numerical model is evaluated considering a 7.55 m high WES
spillway, hydraulically shaped for Hd = 1.9 m. The computational domain
bounded by a system of linear elements is shown in Fig. 2.10.

8Experience shows that a certain amount of under-relaxation is necessary for the iter-
ative process is to converge; this means that the second member on the right-hand side of
the equation (2.61) is to be multiplied by a factor ω < 1.
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Figure 2.10: The computational domain for the WES spillway

The upper part of the boundary (nodes 1-10), representing the free-surface,
is changing during computations, as the ultimate free-surface location is
sought through the described iterative numerical procedure. It may be noted
that only a small number of nodes is sufficient for numerical simulations.

For ratios H/Hd = 1, and hp/Hd = 1.33, the discharge coefficient is equal
to [69]:

Cq =
q√

2g ·H3/2
= 0.49, (2.62)

and the unit discharge is q = 5.50 m3/( s m).

Comparison of the calculated and the measured free-surface profiles is given
in Fig. 2.11. For H/Hd = 1.0, the calculated value of discharge coefficient
is Cq=0.48. A rather good agreement between the calculated and measured
results is evident.

Generally, the presented results are obtained in a small number of iterations
(20–30). However, it is observed that there exists a region of instability
immediately upstream from the spillway crest. It is the transition zone
between the subcritical and the supercritical flow, and some convergence
problems can be experienced in the vicinity of the critical depth. Depending
on how much this problem affects the results, the following measures are at
disposal: (i) increase the number of nodes in the region of instability, (ii)
insert of a number of ”pseudo” nodes in addition to the original set of
the free-surface nodes, so that the perturbation matrix is calculated for all
nodes, but based on elementary displacements of only original modes, and
(iii) replace linear elements by cubic spline elements in the critical region.
Further experimentation in this respect is to be done.
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Figure 2.11: Numerical simulation of the WES spillway flows for H/Hd=1.0,
0.8, 0.5, and corresponding unit discharges: q=5.50, 3.72, 1.70 m3/(s m).
(Only enlarged portions of the computational domain are shown)
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Some interesting results are obtained concerning the pressure distribution
along the WES spillway. The hydraulic pressure at the free-surface nodes is
zero (as can be expected), as well as along the spillway crest. Downstream,
some small underpressures are calculated.

Generally, the calculated pressures are close to zero, as should be for the
caseH/Hd =1. In cases when H/Hd 6= 1, the pressure distribution along the
spillway contour is not so favorable, as can be seen in Fig. 2.11. Although the
obtained pressure diagrams could not be verified by data offered in literature
[69], they illustrate the power of B.E.M. in practical applications.

The calculated velocity field for one of the studied cases is depicted in
Fig. 2.12.

Figure 2.12: The calculated velocity field shown for the entire computational
domain (top) and an enlarged portion (bottom)

2.5.2 The Imperial Dam spillway

The second example pertains to scale-model investigations of the Imperial
Dam spillway, completed by the Bureau of Reclamation in 1949 [66]. The
prototype is an Ambursen-type dam, with 8.2 m high spillway (Fig. 2.13).
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Figure 2.13: Cross-section of the Imperial Dam spillway

Extensive research using the spillway hydraulic model, built in scale 1:30,
has been done in order to determine the optimal shape of the spillway crest.
Free-surface profiles and pressure distributions, measured for a range of dis-
charges 0.017–0.0635 m3/(s m), are valuable data for calibration and vali-
dation of numerical models for prediction of spillway flows.

The results obtained by the B.E.M. are given in Fig. 2.14. The calculated
and measured free-surface profiles are in a good agreement. Comparison
of calculated and measured pressure distributions shows also a very good
agreement.

The calculated rating curve and the coefficient of discharge dependency on
the upstream head, are presented in Fig. 2.15. The overall agreement is
again acceptable. Deviations of calculated Cq values from the measured
ones are within 3%.

The calculated velocity field for unit discharge of 0.038 m3/(s m) is presented
in Fig. 2.16.

2.5.3 The Buk Bijela Dam spillway

The previously shown examples could not be used to verify the calculated
velocity fields. This kind of verification is achieved using the experimental
data of scale model investigations carried out in Serbia for the Buk Bijela
Dam on the Drina river [86]. The cross-section of the prototype spillway is
given in Fig. 2.17.

Velocities were measured on a hydraulic model built in scale 1:25.
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Figure 2.14: Numerical simulation of flow over the scale model of the Impe-
rial Dam spillway [37]
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Figure 2.15: Unit discharge and coefficient of discharge values pertaining to
the scale model of the Imperial Dam spillway [37]

Figure 2.16: The calculated velocity field for the scale model of the Imperial
Dam spillway (q = 0.038 m3/(s m)) [37]

The comparison between the calculated and measured velocity fields for the
prototype and the scale model unit discharges of 91.33 and 0.029 m3/(s m)
respectively, is given in Fig. 2.17.

The calculated free-surface profile is slightly below the measured one, thus
the calculated velocities are slightly greater than the measured ones (10% on
the average). It can be noted that although the viscous effects are neglected,
the velocity distribution is generally acceptable, except near the solid sur-
face. The calculated depth-averaged velocity can be accepted as sufficiently
accurate for engineering purposes.

The results of calibration and validation of the B.E.M. presented in this dis-
sertation clearly demonstrate that the potential flow theory is applicable for
analysis of the curvilinear free-surface (gravity) flows, and that the B.E.M.
has a remarkable applicability in engineering practice.
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Figure 2.17: A cross-section of the Buk Bijela Dam spillway and the calcu-
lated velocity field on the scale model for unit discharge q = 0.029 m3/(s m))
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Therefore, it is to be expected that the B.E.M. will gain a wider role in the
open-channel hydraulics. However, further investigations are recommenced
in order to: (i) improve the iterative procedure for free-surface determina-
tion, and (ii) achieve coupling of the potential flow region with the boundary
layer near solid surface, where effects of friction are pronounced.
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3

Experimental Investigations

In this chapter the results of experimental research are presented. Simili-
tude conditions for building small scale models of earth structures exposed
to overflowing are considered. The laboratory flume, the measuring equip-
ment, and experimental procedures are described. The initial and bound-
ary conditions are specified, and results of four characteristic experiments
are presented. Empirical correlations defining the erosion rate of overflown
model structures are established for subsequent numerical simulation of the
process.

3.1 Erosion resistance of cohesive soils

The erosion of cohesive soils exposed to running water is a very complex
phenomenon. Research in this field is interdisciplinary. Contrary to non
cohesive soils, where the particle size and weight are the two main factors
affecting the erosion process, the erosion resistance of the cohesive soils
depends on a number of factors, the principal one being the electrochemical
bond of the particles. This bond depends on electrolyte presence, mineral
structure, temperature, pH, etc., [47, 61]. The mutual interaction of these
factors, and specific ways in which they affect the erosion process, are not
too clear, thus the erosion of cohesive soils is one of those topics which are
predisposed for indefinite research.

Consequently, there is no general approach to the analytical treatment of
this phenomenon. In spite of gros simplifications, equations defining the
conservation laws of mass, momentum and energy for turbulent flows over
cohesive materials cannot be solved in a satisfactory way [64]. For this
reason, the engineering practice relies on semi-empirical research, including:

(a) laboratory investigations;
(b) investigations in situ for particular case studies;
(c) investigations for design of canals without revetment, and
(d) investigations for land use (particularly of farmland).

43
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The experimental research carried out in laboratory flumes are of the main
interest. Previous laboratory investigations have been aimed either toward
better understanding of the physical and chemical processes (fundamental
research on the microscopic level [59, 61]), or toward specifying criteria for
the onset of erosion – the critical flow velocity [55], or the critical shear stress
[52, 53, 58, 60]. Unfortunately, the published results of such investigations
cannot be used for numerical modeling of overflown earth structures, because
they refer to specific kinds of materials [49, 57], and are developed for steady,
uniform flow conditions. Therefore, it was necessary to carry out a number
of laboratory tests as a part of this dissertation, in order to establish a
correlation between the hydraulic parameters of the accelerating flow and
the quantity of the eroded material.

3.2 Physical factors affecting the erosion process

An overflown earth structure (dam, embankment, levee, etc.) is exposed to
effects of gravity, flowing water, and pore pressures within the structure.

The overflowing water affects the erodible surface through shear stresses,
which are proportional to the square of the local velocity and the absolute
roughness. In addition to this, an overflown structure is exposed to hy-
drostatic pressures, forces of cohesion, and pore pressures which develop as
saturation of the soil takes place1. As these physical factors affect the ero-
sion resistance and structural stability, they all need to be considered when
specifying the similitude conditions for the scale model investigations.

3.3 Similitude conditions

The choice of scales for physical (hydraulic) modeling of earth structures
exposed to overflowing require a careful consideration of several similitude
conditions, including weir flow, seepage, geomechanic and rheologic charac-
teristics of the material. Each of these conditions is considered separately.

3.3.1 Weir flow

The polygon of forces acting on a fluid particle under the accelerating flow
conditions is depicted in Fig.3.1. It is formed by forces of gravity ~Fg , vis-
cosity ~Fs, pressure ~Fp, and inertia ~Fi.

If the forces are expressed relatively to the inertial force, the following di-
mensionless ratios: Fg/Fi, Fs/Fi, and Fp/Fi, known as the Froude number

1Water is being adsorbed on the particle surface, while the trapped air is being com-
pressed, the overall pressure surpassing the hydrostatic one.
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(Fr), the Reynolds number (Re) and the Euler number (Eu) respectively,
are introduced. They quantify the impact of gravity, viscosity, and pres-
sure, relatively to inertia.

Figure 3.1: Polygon of forces

The complete (”dynamic”) similitude between the model and the prototype
is assured when the corresponding polygons of forces are geometrically si-
milar, which implies the following equalities:

(Fi)m

(Fg)m
=

(Fi)p

(Fg)p
(3.1)

(Fi)m

(Fs)m
=

(Fi)p

(Fs)p
(3.2)

(Fi)m

(Fp)m
=

(Fi)p

(Fp)p
, (3.3)

where the subscript ”m” refers to the model, and ”p”, to the prototype.

Another way to express the same conditions is to say that the complete
similitude requires that the Froude, Reynolds, and the Euler number of the
model must be equal to the Froude, Reynolds, and the Euler number of the
prototype:

Frm = Frp, (3.4)
Rem = Rep (3.5)
Eum = Eup. (3.6)

If two of the conditions (3.2) or (3.5) are satisfied (gravity and viscous
forces), then the third equation (pressure forces) is dependent and auto-
matically is satisfied.

As the sketch in Fig.3.1 shows, in an accelerated flow the viscous forces are
much smaller than gravity, and can be neglected. Thus, only one condition
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of similarity is required: Frm=Frp. This condition is referred to as the
”Froude similitude”. It can also be expressed in this way:

Fr∗ =
Frm
Frp

= 1, (3.7)

where the subscript ”∗” denotes scale.

The Froude similitude is the imperative condition when the shape and po-
sition of a flow boundary – the free surface, is governed by gravity. In other
words, the trajectory of fluid particles over a weir or spillway is predomi-
nantly determined by gravity. (If the Froude similitude is not ensured, and
the approach Fr number on the model is too high, it might happen that the
flow would simply shoot over the model spillway crest!)

If L∗ is the chosen length scale, the Froude similitude yields scales for other
variables, such as discharge, time, and velocity:

Q∗ = L
5/2
∗ (3.8)

t∗ = L
1/2
∗ (3.9)

V∗ = L
1/2
∗ . (3.10)

An additional similitude condition needs to be introduced, pertaining to the
shear stresses, induced by water on the solid surface. This effect may be
quantified by the friction coefficient:

Cτ = f

(
Re,

k

h

)
, (3.11)

where Re is the Reynolds number, and the ratio between the absolute surface
roughness k and water depth h is known as the relative roughness k/h.

As the effects of viscosity may be neglected in the fully developed turbulent
flow, the friction coefficient (3.11) becomes independent of the Reynolds
number, and depends solely on the relative roughness. Thus, the similitude
condition for effects of friction may be expressed in this way:

(
k

h

)

∗
= 1, or k∗ = h∗ = L∗. (3.12)

If the absolute roughness k is represented by the so-called ”equivalent sand
roughness”, which is usually defined by the characteristic sand grain size d90

[50], the condition (3.12) can be replaced by:

(d90)∗ = L∗. (3.13)
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The characteristic grain diameter d90 describes gradation of material, speci-
fying that 90% grains have smaller diameters.

In addition to the above considerations, one has to keep in mind a practical
recommendation that if fully turbulent flow conditions are to be ensured,
water depths on scale models must not be too small (less than 1-2 cm).

3.3.2 Seepage

Although the surface shear on the water-solid interface is the dominant fac-
tor of the erosion process, similitude conditions for seepage and pore pres-
sures must be considered as well, in order to reproduce the overall ”behav-
ior” of the overflown structure in a physically realistic way. The approach
of Mandel and Weber [65] is adopted, according to which seepage is well
reproduced on small scale models if the following conditions for density of
the saturated material, porosity, and hydraulic conductivity are fulfilled:

ρ′s∗ = 1 (3.14)
n∗ = 1 (3.15)

K∗ = L
1/2
∗ . (3.16)

If the Hazen relation: K ∝ d2
10 is applied, the relation (3.16) becomes:

(d10)∗ = L
1/4
∗ , (3.17)

where d10 is the characteristic grain size (specifying that 10% grains have
smaller diameters).

The scale for seepage velocities is, according to Darcy’s law:

Vf∗ = K∗ = L
1/2
∗ . (3.18)

3.3.3 Geomechanics and rheology

The theory of geomechanic and rheological similitudes is important for ex-
perimental research of soil behavior, especially for studying stability limits.
The basic postulate is that similarity of impact of gravity (weight) and the
inertial force is only possible if the scale model and the prototype are made
of the same material [54, 65]. If this is not feasible, the scale model has to
be built of some material composed in such a way that its mechanic and
rheologic characteristics are related to the prototype material through the
scales for stresses, strain, and time. Material, carefully composed to be used
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for scale models, is called the ”equivalent material” [54]. Its composition
should ensure that deformations of the model structure and the prototype
structure are geometrically similar.

For a chosen length scale L∗, all other necessary scales for the equivalent
material are derived, and the results are summarized in Table 3.1.

Table 3.1: Scales for composition of the equivalent material
.

Physical property Scale
Density of saturated material ρ′s∗ = 1
Angle of internal friction φ∗ = 1
Stresses/pore pressures σ∗ = p∗ = L∗
Cohesion C∗ = L∗
Young’s elasticity module E∗ = 1
Poisson’s plasticity ν∗ = 1

3.4 Composition of the equivalent material

Taking into account previously defined hydraulic and rheologic scales, the
equivalent material is composed in such a way to simultaneously satisfy the
following conditions:

- the grain size relevant for seepage (3.17):

(d10)∗ =
(d10)m

(d10)p
= L

1/4
∗

- the grain size relevant for surface roughness (3.13):

(d90)∗ =
(d90)m

(d90)p
= L∗

- cohesion (3.1):

C∗ =
Cm

Cp
= L∗

- hydraulic conductivity (3.18):

K∗ =
Km

Kp
= L

1/2
∗ .
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The equivalent material is chosen to be a sand mixture. Its gradation is
composed according to scales (3.17) and (3.13). A small amount of kaolin
or bentonite additive is mixed with sand in order to provide some cohesion
(3.1), and to ensure realistic hydraulic conductivity (3.18). The kaolin and
bentonite bonding additives are minerals of kaolinite and montmorilonites
with densities 1.8 – 1.9 t/m3 and basic chemical components:

- SiO2 . . . . . . 60 – 80% for kaolin; 50% for bentonite;
- Al2O3 . . . . . . 33 – 40% for kaolin; 17 – 25% for bentonite;
- Fe2O3 . . . . . . ≤ 3%;
- CaO . . . . . . < 5%.

The simultaneous fulfillment of conditions (3.17) and (3.13) requires fine
sand of almost uniform gradation. This can be explained by an exam-
ple. Assume that the characteristic grain sizes of material in the field are:
(d90)p=10 mm, and (d10)p=1 mm. The corresponding characteristic grain
sizes for the equivalent material are given in Table 3.2.

Table 3.2: Analysis of gradation for the equivalent material

L∗ 1:1 1:5 1:10 1:15 1:20 1:25 1:30 1:40
Scale (d90)∗ 1 0.200 0.100 0.067 0.050 0.040 0.033 0.025

(d10)∗ 1 0.669 0.562 0.509 0.473 0.447 0.426 0.398
Model (d90)m 10 2 1 0.67 0.50 0.40 0.33 0.25
[mm] (d10)m 1 0.67 0.56 0.51 0.47 0.45 0.43 0.40

From the given results it is clear that the hydraulic models in scales less than
1:15, must be made of more or less uniformly graded equivalent material.

As for the conditions imposed by seepage and cohesion, some practical prob-
lems may arise. Scale models require a relatively small amount of bonding
additives, often insufficient for obtaining an adequate hydraulic conductivity.
For this reason, addition of some hydrophobic substance may be required.

This aspect will be clarified by an example from practice2. The basic cha-
racteristics of the prototype are:

- dam height: Hp = 15 m;
- cohesion of material: Cp = 12 kPa;
- hydraulic conductivity: Kp = 5 × 10−9 m/s.

The corresponding model values depending on scale are given in Table 3.3.

2Design study of the Bela Reka earth dam, Hydroprojekt Co., 1986.
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Table 3.3: Cohesion and hydraulic conductivity of the equivalent material

L∗ 1:1 1:2 1:5 1:10 1:20 1:40 1:50
Scale C∗ 1 0.500 0.200 0.100 0.050 0.025 0.020

K∗ 1 0.707 0.447 0.316 0.224 0.158 0.141
Hm [m] 15 7.5 3.0 1.5 0.75 0.38 0.30

Model Cm [kPa] 12 6.0 2.4 1.2 0.6 0.3 0.24
Km × 10−9 [m/s] 5.00 3.54 2.24 1.58 1.12 0.79 0.70

From the given results it can be concluded that the model values of cohe-
sion and hydraulic conductivity decrease with reduction of the model scales.
Eventually, the hydraulic conductivities become so small that addition of
some hydrophobic substance becomes necessary.

After considering all described aspects, it was decided to use for the equiva-
lent material a mixture of fine sand with 2 – 3% kaolin or bentonite additive.

The characteristic grain sizes of the sand mixture are:

d10 = 0.13 mm
d50 = 0.20 mm
d90 = 0.25 mm.

The gradation curve3 is given in Fig.3.2.

Figure 3.2: Gradation curve of the equivalent material. It is almost uniform,
90% of grain sizes being 0.1 – 0.3 mm.

The values of the coefficient of uniformity and the geometric standard devi-
ation are: d60/d10=1.54 and σg =

√
d84/d16=1.22, respectively.

3Investigations were done at the Soil Mechanics Laboratory, Faculty of Civil Engineer-
ing, Belgrade.
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The density of samples at about 20% degree of saturation is: 1.85 – 1.96 t/m3,
and the cohesion: 1 – 5 kPa. The hydraulic conductivity is, without addition
of hydrophobic substances, of an order 10−8 m/s.

3.5 Laboratory installation and experimental
conditions

Laboratory installation consists of a laboratory flume and the measuring
equipment. After a short description, experimental conditions are specified,
and the experimental procedure is explained.

3.5.1 Laboratory flume

Scale models of earth structures are built in the laboratory flume 22 m long,
1.0 m wide, and 1 m high. The flume has a concrete bottom and glass walls.
It has its own recirculatory water supply system, with the maximum flow
capacity of 180 L/s.

The erosion process is observed and photographed through the glass wall.
For this purpose, a referent mesh is drawn on the glass wall. Qualitative
and quantitative results are obtained using high-speed photography as the
recording technique.

The flume inflow is regulated by a valve. The inflow discharge, measured by
sharp-crested weir, is kept constant throughout each experiment at 4 L/s,
which is 1/10 – 1/15 of the maximum outflow discharge during the overflow-
ing of the model structure. On the upstream end of the flume, the water
passes through a system of stilling elements, placed immediately downstream
from the sharp-crested weir.

The inflow is directed in such a way that the flow in the flume is parallel,
and the velocity distribution is as much uniform over the cross section as
possible. This is an important condition for uniform overtopping of the
model structures. Only in this case the flow may be considered as two-
dimensional, and analyzed in the vertical plane. In some experiments the
width of the flume is reduced to 0.6 m in order to have more suitable flow
conditions for overtopping of the model structures.

On the downstream end of the flume a 2 m long, 1 m wide, and 0.5 m high
sediment trap is installed to hold the eroded material.

3.5.2 Measuring equipment

The measuring equipment consists of (a) electric gauges for continuous mea-
surement of water levels, and (b) devices for recording the erosion process
during overflowing of the model structures.
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The electric gauges for continuous measurement and recording of water levels
consists of power supply, gauges converting water level changes to electrical
capacity changes, amplifying unit and an oscillograph (device used to output
signal on screen and paper). The electrical gauges and the amplifying unit
are combined in a single instrument called the ”universal measuring Wheat-
stone bridge”. The KWS Hottinger 6/T universal measuring bridge is used
for continuous water level measuring, and the 14 channel data acquisition
system is used for water level registration. All instruments are calibrated
before each experiment. The accuracy of water level measurements is about
± 0.2 mm.

The erosion process is photographed directly through the glass wall of the
flume by a high-speed camera. The average sampling interval was 5 s during
experiments lasting several minutes. The recorded data are analyzed from
enlarged photographs. The accuracy of reading photographs is about ±
0.5 mm. Time is measured by an electrical chronometer.

The measuring equipment set-up is schematically shown in Fig.3.3.

Figure 3.3: Schematic presentation of the measuring equipment in the labo-
ratory flume

3.5.3 Measuring technique

Scale model structures are built in series of 3–4 cm thick horizontal lay-
ers of compacted equivalent material. The building procedure is carefully
controlled, and special attention is payed that the crest of the structure is
perfectly horizontal.



3.6. Results of laboratory investigations 53

The experiment is started with filling the volume of the flume upstream
of the structure, at an inflow rate of 4 L/s. At one point the water level
reaches the crest of the structure, and the structure is overtopped. The
erosion process that takes place after overtopping is photographed, as is
illustrated in Figs. 3.4, 3.5, and 3.6.

It can be remarked that the erosion process takes place at once, its rate
varying with the overflow discharge as the height (volume) of the structure
progressively decreases.

It can also be noted that soon after the structure is overtopped, the overflow
discharge becomes higher than the inflow at the upstream end of flume.
The water level in the flume starts to decrease, and the storage is gradually
depleted. One of the principal factors influencing the rate of this process is
the ratio of the model volume to the storage volume. In most performed
experiments this ratio is 1:25.

The flow hydrograph can be determined from the continuity equation, ex-
pressed in the the finite-difference form:

Qi+1 = Qi − B
∆hi

∆t
∆xi (i = 1, 2, 3, ...) (3.19)

where Qi and Qi+1 are the inflow and outflow discharges for control volumes
shown in Fig. 3.3; ∆hi are the depth variations in control volumes, recorded
over the the time interval ∆t; ∆xi are the control volume lengths, and B is
the width of control volumes.

The quantity of the eroded material in each time interval can be calculated
form the recorded change of the scale model volume which is equal to the
change of cross-sectional area between two successive photographs.

Evolution of the erosion process can be presented either by changes of the
scale model volume incrementally (for each time interval), or cumulatively,
by integral curves. The mean transport rate of the eroded material is ob-
tained by dividing the change of volume by the corresponding time interval.

3.6 Results of laboratory investigations

Eleven experiments are performed in this dissertation. Five of those exper-
iments are used for improving scale model building methods, and adjusting
measuring equipment. Out of six experiments which can be considered as
completely valid, four are chosen to be presented in this section.
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Figure 3.4: Erosion of the scale model
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Figure 3.5: Erosion of the scale model
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Figure 3.6: Erosion of the scale model
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Three of the chosen experiments (numbers 1, 2, and 4 ) are performed under
the following conditions:

1. Geometry of the scale model:

- shape of the cross-section: trapezoid;
- height: 0.3 m;
- upstream slope: 1:1.5;
- downstream slope: 1:2.

2. Building material:

- sand mixture: d10 = 0.13 mm; d50 = 0.20 mm; d90 = 0.25 mm;
- coefficient of uniformity: d60/d10 = 1.54;
- geometric standard deviation: σg =

√
d84/d16 = 1.22;

- angle of internal friction: φ = 32 – 34o;
- density in saturated state: ρ′s = 1.90 – 1.93 t/m3;
- wet content: w = 19.6 – 22.5%;
- cohesive additive: kaolin, 2%;
- cohesion: C = 1–2 kPa;
- hydraulic conductivity: K = 10−8 m/s.

3. Experimental parameters:

- ratio of model volume to the upstream storage volume: 1:25;
- inflow rate: 4.0 L/s.

One experiment (no. 3) is performed under the same conditions as the other
three experiments, except for the amount and type of the cohesive additive.
In this case, a stronger, bentonite additive is used, its content being 3%.
The cohesion is thus increased to C = 5 kPa, and hydraulic conductivity
reduced toK = 10−9. Density of the material in this case is: ρ′s = 1.94 t/m3,
and the wet content w = 23.1%.

3.6.1 Qualitative analysis

The contours of the overflown model structure, obtained from photographs,
are shown in Fig. 3.7. These contours can be used to quantify the erosion
process rate, and to study its evolution.

It is noticed that in the initial phase of the experiments (shortly after the
model structures are overtopped), there is no major damage to the down-
stream slope of the structures. This period, lasting about 10-15% of the
total failure time, is an ”erosion time lag”, due to small water depths. After
this period, as depths of the overflowing current increase, the downstream
surface of the model structures noticeably starts to erode.
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Figure 3.7: Erosion contours in experiments 1, 2, 3, and 4 (top to bottom);
drawing scale: 1:10
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In experiments with weaker cohesive additive (nos. 1, 2, and 4), the material
is washed away continually, at an almost constant erosion rate. The erosion
contours are smooth and streamlined. In the experiment with a stronger
cohesive additive (no. 3), the process is evolving more slowly. In this case the
material is being washed away in a ”step-like” fashion (discontinuously), the
erosion contours are not streamlined, and their downstream slope is milder
than slopes in other experiments.

It is also observed that the scale model structures are never entirely washed
away, and that a small volume of material remains long after the upstream
storage is depleted. The height of this residual material is about 10-30% of
the initial model height, depending on the type and amount of the cohesive
additive.

3.6.2 Quantitative results

The overflow hydrographs, obtained by continuous measuring the water
levels and application of the continuity equation (3.19), are presented in
Fig. 3.8, as well as the corresponding unit discharge hydrographs. Even
though the experiments 1, 2, and 4 are performed under the same initial
and boundary conditions, the results are not the same. This is due to un-
avoidable differences in construction of the scale models, as homogeneity
and compactness of the material can never be absolutely the same.

Comparing the overflow hydrographs in experiments nos. 1, 2, and 4 (all
performed with the same equivalent material, and under the same condi-
tions), and the experiment no. 3 (performed with more cohesive material),
it is obvious that the maximum discharge decreases with the increase of
cohesion.

The transport rate of the eroded material is presented in Fig. 3.9. It is
expressed as volume of material washed away in unit of time. As may be
recalled, since the problem is two-dimensional, the transport rate can be
calculated from changes of the model cross-section, determined from pho-
tographs taken in regular time intervals.

From the overflow hydrographs and transport rates of the eroded mate-
rial, cumulative volume curves for water and material can be determined
(Fig. 3.10).

As expected, a slower process of erosion, with a less smooth cumulative
curve, occurs in experiment no. 3 with more cohesive material. A trend of
”step-like” curves reflecting non-uniform erosion rates is observed whenever
a stronger bonding additive is used in experiments. Therefore, it can be
concluded again, that the non-uniformity of the erosion rate increases with
cohesion of the material.
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Figure 3.8: Measured total and unit overflow discharges
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Figure 3.9: Transport rate of the eroded material

By combining the given cumulative curves, a dimensionless function
Q/Qs = f(t/T ) can be determined, where Q/Qs is the ratio of water and
material discharges, and t/T is the ratio of any instant of time and the
total erosion time (Fig. 3.11). This relationship can be approximated by
an exponential function. Values of the regression coefficients depend on the
cohesion of the material.

Consider now the erosion rate in another way. The erosion rate in the
vertical direction can be quantified from experimental data, and results are
shown on two dimensionless diagrams in Fig. 3.12.

The first diagram depicts the reduction of the scale model height in time,
where h and H are the instantaneous and the initial model heights respec-
tively, and T is the total erosion time.

The second diagram is formed introducing the ”erosion number” Er, instead
of dimensionless time. The erosion number is a parameter which reflects
the instantaneous degree of reduction of the structure volume, due to the
erosion:

Er =
∀e

∀o
=

∀o − ∀
∀o

= 1 − ∀
∀o
, (3.20)

where ∀o is the initial volume, ∀ is the instantaneous volume, and ∀e = ∀o−∀
is volume of the eroded material.

The erosion number Er, which takes values between 0 and 1, reflects dynam-
ics of the process. By its introduction, the instantaneous size of the structure
and the duration of the erosion process can be combined in a convenient way
for quantitative analyzes.
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Figure 3.10: Cumulative volume curves for water (top) and the eroded ma-
terial (bottom)
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Figure 3.11: Dimensionless water-to-solid discharge

Figure 3.12: Erosion rate in the vertical direction

Diagrams in Fig. 3.12 show that in experiments nos. 1, 2, and 4, after a
short initial period (t/T > 0.15), the erosion in the vertical direction is
rather uniform – the erosion rate is constant4. In case of a more cohesive
material (experiment no. 3), the erosion is not uniform, and the erosion rate
is not linear.

4The linear regression is in the form: h/H = 1.1 − 0.93(t/T ), r = 0.989.
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Figure 3.13: Degree of erosion related to dimensionless discharge

By combining the relationships Q/Qs(t/T ) in Fig. 3.11, and Er(t/T ) in
Fig. 3.12, a relationship Q/Qs(Er) can be determined, as shown in Fig. 3.13.

Exponential approximations are possible for this relationship:

Q

Qs
= C1 exp(C2 · Er). (3.21)

Values of the regression coefficients C1 and C2 are experiment dependent
(Table 3.4).

Table 3.4: Regression coefficients

Experiment no. C1 C2 r

1, 2, 4 1.6540 4.4819 0.9473
3 0.4936 9.7770 0.9607

Generally, smaller values C1 and higher values C2 correspond to more co-
hesive materials. As the presented results are valid only for particular scale
models built of particular materials, more research is needed for more gene-
ral conclusions. However, the obtained results allow certain extrapolation
to prototype structures, as is shown in the following section.
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3.7 Scale Effects and Extrapolation of

Experimental Results

The scale effects are manifested by discrepancies between the measured va-
lues and the values which are to be expected from the similarity laws. The
discrepancies are larger as the model scale is smaller.

Investigating erosion of overflown earth dams on scale models of different
heights (0.3 – 3 m), Dunglas and Fayoux [50] concluded that geometric
similitude of model and prototype deformation can exist only if scales are
not smaller than 1:10. Only in this case, the hydraulic and rheologic simil-
itude laws, used for composition of the equivalent material, are valid. A
similar conclusion can be drawn from experiments in this dissertation, the
determined limiting scale being 1:15.

Considering these conclusions, the experimental results obtained in this dis-
sertation are analyzed from the point of view of their extrapolation to field
conditions. The averaged results of experiments nos. 1, 2, and 4, are used
for estimation of their applicability to prototype earth structures of various
sizes. The characteristics of these structures for a range of model scales 1:2
to 1:40, are presented in Table 3.5.

As can be seen from this table, the experimental results in this dissertation
can be representative for relatively small earth structures, with heights up
to about 4-5 m, and typical side slopes 1:1.5 or 1:2. These structures are
made of homogenous materials with cohesion up to 20 kPa, and hydraulic
conductivity in the order of 10−8 m/s.

The maximum unit discharge which can be expected in case of overflow-
ing of such structures is about 20 m3/(s m), and the total failure time is
5–10 minutes.

Therefore, it can be concluded that the experimental results obtained in this
dissertation can be extrapolated to small earth structures, such as dams on
micro-reservoirs, levees along rivers, dikes, emergency fuse-plugs, and other
similar structures.
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Table 3.5: Extrapolation of experimental results to field conditions in terms of model scales

Ggeometric scale/ 1:1 1:2 1:5 1:7 1:10 1:15 1:20 1:25 1:30 1:40
Prototype charact. (model)

Height [m] 0.30 0.60 1.50 2.14 3.00 4.50 6.00 7.50 9.00 12.0
d10 [mm] 0.13 0.26 0.65 0.93 1.30 1.94 2.60 3.25 3.94 5.20
d50 [mm] 0.20 0.40 1..00 1.43 2.00 2.99 4.00 5.00 6.06 8.00
d90 [mm] 0.25 0.50 1.25 2.79 2.50 3.73 5.00 6.25 7.58 10.00
C [ kPa] 1-2 2-4 5-10 7-14 10-20 15-30 20-40 25-50 30-60 40-80
K [m/s] 10−8 10−8 10−8 10−8 10−8 10−8 10−8 10−8 10−8 10−8

Max.unit discharge
[m3/(s m)] 0.06 0.3 3.5 8 19 52 107 188 303 607

Failure duration
[min] 2 3 4 5 6 8 9 10 11 13
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Development of the
Numerical Model - Part II

After having developed the numerical procedures for calculating the curvi-
linear gravity flows, and an experimental relationship between the unit dis-
charge of water and the corresponding transport rate of the eroded mate-
rial, the numerical model is completed with a module for calculating the
progressive failure of an overflown earth structure. Following the concept
of two-stage calculation, the sediment transport and dam erosion is calcu-
lated for the known (previously calculated) flow field. The empirical relation
Q/Qs = f(Er) is used for this purpose.

The onset of erosion is defined according to the critical velocity criterion.
The main idea is to compare the calculated depth-averaged velocity along
the flow path with the critical velocity for the given type of material. If the
local depth-averaged velocity is greater than the critical velocity, the local
erosion depth is calculated, as being proportional to the difference of the
two velocities. In this way, a new contour of the solid boundary is obtained,
providing geometry data for hydraulic calculation in the next step. Thus,
no geometric schematizations are necessary, as is the case in earlier models,
such as the one proposed in reference [5].

4.1 The critical velocity for incipient motion

The incipient motion of solid particles exposed to flowing water is defined
by the critical velocity approach, rather than by the critical shear stress
approach, because the bottom shear stresses cannot be accurately calculated
by the potential flow model. On the other hand, it is demonstrated by the
previous examples that, although the potential flow model cannot give an
accurate velocity distribution over flow depth, it can yield quite an accurate

67
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prediction of depth-averaged velocities, at least with an acceptable accuracy
for engineering purposes.

For cohesionless materials, a class of critical velocity formulas has the general
form:

vc = a1

√
2g ·∆ · d, (4.1)

where d is the mean grain diameter, ∆ = (ρs − ρ)/ρ is the relative density
of material (ρs, and ρ are densities of the solid and the liquid phase, respec-
tively), g is the acceleration of gravity, and a1 is an empirical factor, the
value of which depends on the flow characteristics. According to Izbash et
al. [77], a1 = 0.8–1.2.

For cohesive materials, it is not easy to define conditions for incipient mo-
tion. A large number of references (some of the major ones are listed in
Literature) clearly shows that no general approach is available. Some re-
searches approach the problem on a ”microscopic” level (see for instance
[47, 59], while others look at the phenomenon from a simplistic, engineering
point of view. The ”engineering approach” is used in this dissertation, and
a formula similar to the one suggested by Mirtskhulava [55] is assumed:

vc = a2

√
2g ·∆ · d+ 2.5 · Cf ·Kh/ρ, (4.2)

where Cf is the mean cohesion at the rupture ”fatigue” limit, Kh is the
homogeneity factor, and a2 is an empirical constant, depending on the flow
characteristics.

According to [55], the relationship between the cohesion C (determined from
soil samples) and the cohesion at the rupture limit is: Cf = 0.035 · C. The
homogeneity factor Kh is equal to unity when the soil is homogeneous. The
engineer is supposed to select the value of Kh in situ. Assuming the values
of the given soil parameters are known, the formula (4.2) can be shortly
written as:

vc = a2

√
2g ·∆ · d+ c, (4.3)

where c = 2.5 · Cf ·Kh/ρ is a material constant.

It can be observed that the equation 4.3 is an extention of the equation 4.1,
accounting for the effects of cohesion. In both cases, the critical velocities
are defined as the time-averaged velocities at the ”grain height” above the
bed.

Assuming logarithmic velocity distribution over flow depth, the critical ve-
locity formula (4.3) can be replaced by a similar expression formulated in
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terms of the critical depth-averaged velocity:

Vc = a3 · log
(

8.8h
d

)
·
√

2g · ∆ · d+ c. (4.4)

The values of parameters a3 and c are case-dependent, and are adjusted in
order to match the results of calculation with measurements. Thus, a3 and
c are calibration parameters.

It is pointed out that the role of parameters a1 in (4.1), a2 in (4.2), and a3 in
(4.3) and (4.4) is to account for turbulence effects. As velocity fluctuations
may be very strong, attaining up to 70% of the time-averaged velocity, the
critical conditions for the grain detachment are to be defined by the local
instantaneous velocity (including fluctuating component), rather than by the
local time-averaged velocity. Values of parameters a1, a2, and a3 quantify
the impact of fluctuations.

The criterion for erosion is thus a simple one: if the local depth-averaged
velocity (Ṽ ) in a particular section along the flow path is greater than the
critical velocity Vc, the erosion will take place. If this is not the case, the
solid boundary will remain unchanged.

4.2 Calculation of erosion

Quantitative assessment of the erosion process is done by the following pro-
cedure:

(i) The flow rate over the earth structure is assumed to be constant during
the time step ∆t (quasi-steady flow conditions). From a calculated flow rate
over the structure and the empirical relationship (3.21):

Q

Qs
= C1 expC2 · Er

the volumetric transport rate of the eroded material (Qs) is calculated. It
is the mean transport rate during the period ∆t.

(ii) The volume of the material, eroded during the time interval ∆t, is equal:

∆∀ = Qs · ∆t. (4.5)

The obtained value is at the same time equal to the change of the cross-
sectional area of the structure (∆A) as the problem is two-dimensional in
the vertical plane, and the flow rates of water and sediment are the unit flow
rates.
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Figure 4.1: Variables involved in calculation of the erosion contour

(iii) Once the total eroded volume is known, it is necessary to define the new
cross-section, or the new contour of the solid boundary over which water is
flowing. This contour is defined by a number of coordinate points–nodes,
and the corresponding segments–linear elements (Fig. 4.1). At each node, a
normal to the boundary is defined, and its intersection with the calculated
water surface yields the local depth. Then, 5-10 local velocities along each
normal line are calculated by the B.E.M., giving the velocity distribution
over depth. The depth-averaged velocity (Ṽi) is calculated by integrating
over depth.

(iv) If the condition: Ṽi > Vc is satisfied, the erosion will take place, and the
normal displacement of the node (Fig. 4.1) is equal:

δi = k ·
(
Ṽi − Vc

)
, (4.6)

where k is the factor of proportionality.

Since the total eroded area is:

∆A =
i=N∑

i=1

δAi =
i=N∑

i=1

δi · ∆si =
i=N∑

i=1

k
(
Ṽi − Vc

)
∆si, (4.7)

the factor of proportionality is equal to:

k =
∆A

i=N∑

i=1

(
Ṽi − Vc

)
∆si

, (4.8)
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and equation (4.6) becomes:

δi =
∆A

(
Ṽi − Vc

)

i=N∑

i=1

(
Ṽi − Vc

)
∆si

. (4.9)

The corresponding vertical displacement of each node is equal:

∆yi =
δi

cos βi
, (4.10)

where β is the angle shown in Fig. 4.1.

(v) By relocating all nodes, a new profile of the solid boundary is obtained,
and the new geometry is used for subsequent hydraulic computations, valid
for the next period ∆t.

The algorithmic structure of this module consists of the following steps at
each time level:

1. Read the hydraulic data obtained by the ”hydraulic module” (B.E.M):
coordinates of the free-surface nodes and velocity distributions along gene-
rated normals.

2. Calculate the depth-averaged velocities.

3. From the unit discharge and the empirical relationship (3.21), calculate
the unit transport rate of eroded material for the current time.

4. Calculate the volume of the eroded material per unit length of the earth
structure, using (4.5). This volume is equal to the change of cross-sectional
area of the structure multiplied by 1 m.

5. Using (4.6)-(4.10) calculate displacement of all nodes along the solid
boundary.

6. Correct the coordinates of nodes along the solid boundary and define the
erosion contour, i.e. the new cross-sectional geometry of the overflown earth
structure.

7. Export the new cross-sectional geometry to the ”hydraulic module” and
proceed with flow calculation on the next time level.

Results of application of the suggested algorithm are presented in the next
section.
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Verification of the Numerical
Model

The verification phase generally consists of evaluation of the mathematical
model applicability (reliability with which the basic equations describe the
given physical phenomenon), as well as performance of the numerical model
(convergence and accuracy of solutions).

The model proposed in this dissertation is verified using data obtained in
experiment no. 2. A 60 s long period of erosion is numerically simulated, and
compared with photographs taken through the glass wall of the laboratory
flume. The time step for numerical simulation is equal to the time interval
between two successive photograph shots (∆t = 5 s). The cross-sectional
contour computed after each time step is taken as the input geometric data
for the next computational step.

The figures that follow depict the calculated water surface levels and the
velocity field. The results of calculation are compared with experimental
evidence in a visual manner, by overlapping photographs with diagrams per-
taining to the same instant. No attempt is made to quantify the differences
between calculated and measured data.

During the given numerical simulation, the number of iterations for the
water surface varied from 18 to 66. The results of hydraulic calculation
were used to calculate volumes of the eroded material, and erosion contours,
as explained in the previous chapter. The calculated erosion contours are
compared with the ones recorded on the model. As in the case of free-surface,
the comparison is purely visual, and is presented on separate diagrams, given
for all computational steps.

This verification case shows that calculation is in a rather good agreement
with experiment. It can be concluded that the proposed numerical model is
capable of simulating experiments. However, its predictive capabilities are
yet to be investigated.
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Conclusions

On the basis of research in this dissertation, the following conclusions can
be drawn:

1. The erosion of earth structures (dams, levees, embankments) exposed to
overflowing is a very complex phenomenon. Although numerous physical
factors influencing erosion of cohesive materials cannot be fully accounted
for analytically, a mathematical model, implemented in a reliable numerical
procedure, is proposed in this dissertation, provided two basic conditions
are satisfied: (a) the problem is two-dimensional (in the vertical plane), so
that the erosion needs to be calculated only in the vertical direction, and
(b) the structure is built of homogeneous, moderately cohesive material.

2. The proposed mathematical model enables estimation of: (a) hydraulic
characteristics of the accelerated, curvilinear free-surface flow, and (b) quan-
tity of eroded material over time, and (c) the erosion countours, or the de-
formed shape of the cross-section of the earth structure during the erosion
process.

3. An unsteady process is approximated by a succession of steady states,
assuming that dependent variables are constant within computational time
intervals (quasi-steady regime). A two-step calculation procedure for each
time interval is proposed. In the first step the hydraulic characteristics of
the stream are calculated. In the second step, erosion contours and the
cross-section of the overflown structure is calculated. This is repeated for
each time interval, until the structure is completely (or almost completely)
washed away by the flowing water.

4. The two-step calculation procedure is implemented in the numerical
model which consists of two modules – the first one for calculating the flow
field, and the second one, for calculating the change of the solid boundary
due to erosion.The two modules are acting independently, the hydraulic
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calculation preceeding the calculation of erosion. The time step is problem
dependent, and its optimal value is to be determined by trial-and-error.

5. Calculation of the flow field is based on the potential flow theory. Ex-
periance proves that this theory is applicable for weir and spillway type of
flows, where inertial effects are dominant in respect to friction.

6. The Boundary Element Method (BEM) is a very convenient method for
treatment of free-surface potential flows, as it requires minimum of input
data, and no restructuring of the entire computational mesh during iterati-
tive determination of the free surface.

7. Numerical modeling of the erosion of moderately cohesive materials must
be based on empirical relationships. The scale models of earth structures
which are used in experimental research must be built of the so-called ”equiv-
alent material”, the composition of which is chosen according to geometric,
hydraulic, and rheologic similarity laws.

8. The laboratory investigations on scale models show that a relationship
between the rate of flow and the rate of erosion can be expressed in the
form:

Q

Qs
= C1 exp (C2 · Er)

where Q and Qs are the mass discharges of water and material respectively,
C1 and C2 are empirical constants, and Er is the ”erosion number”. This
parameter is convenient for quantifying the reduction of the structure volume
during the erosion process.

9. For particular experimental conditions, the empirical constants have val-
ues of C1 = 1.6, and C2 = 4.5. Due to scale effects, the proposed relationship
with the given values of constants can be exptrapolated to prototype earth
structures not higher than about 4-5 m. This means that the obtained ex-
perimental results are valid for relatively small earth structures, such as
dams on micro-reservoirs, levees, dikes, emergency spillways, and similar
structures.

10. The rate of vertical erosion is constant if earth structures are built of
homogenous, modestly cohesive materials, with cohesion up to 10-20 kPa.
This range is typical for most small earth structures. Extrapolation of ex-
perimental results on field conditions, shows that the total failure time of
such structures per unit length would be under 10 min.

11. A more general conclusions would require additional laboratory inves-
tigations, preferably with bigger scale models, built of different equivalent
materials. Data base for model calibration needs to be considerably ex-
tended, before the proposed numerical model gains a wider application in
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practice. Some improvement of the convergence of the free surface calcu-
lation may be possible. Combining the B.E.M. with the boundary layer
modeling is also one possible direction for further improvement.

12. The importance of numerical models such as the one proposed in this
dissertation, lies in their capability to predict the failure mode, the maximum
discharge, and the total failure time of overflown earth structures. These
results represent the basic input data for calculation of flood zones, as well
as for risk and damage assessment in the flooded region.
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